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SUMMARY

Mesh convergence order is a key for certi�cation of the accuracy of numerical solutions. A few available
results and tools in mesh adaption are synthetized in order to specify a mesh converging method for
adaptive calculation of compressible �ows including shocks or viscous layers. The main design property
for this method is early second-order convergence, where early means that the second-order convergence
is obtained with coarse meshes. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

While numerical methods and computers show impressive improvements, the numerical qual-
ity of CFD computations remains a delicate problem, see for example [1]. In particular, es-
timating approximation errors is one of today’s more important challenges in CFD. Error
estimates are progessively more pertinent for this issue (see References [2–4]), but mesh
convergence is still the most popular tool. Mesh convergence theory and methods date back
at least to Romberg [5]. They have been well studied, but in current compressible CFD, mesh
convergence studies are still rather disappointing.
The fundamental assumptions of the theory are: (1) uniform order of convergence, (2)

Cartesian or uniform meshes and (3) embedded meshes.
The uniform order assumption is, for example, the basis of the grid convergence index

proposed in Reference [6]. Now a particular property of compressible �ows is that they
involve either strong singularities, such as shocks, or, in the viscous case, strong local gradients
(viscous shocks, boundary layers). Thus the uniform order is in con�ict with the computation
of these singularities. Uniform re�nements and modern shock capturing schemes will produce
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various orders of convergence, a di�culty that is addressed in Reference [7] for inviscid �ows
with detached shocks. In the case of viscous �ows, numerical order can be even more intricate
since on very �ne meshes, the numerical convergence will �nally switch from �rst order to
second order in shock region. In general, global second-order mesh convergence seems to be
unattainable in most practical applications.
Let us analyse in greater detail both cases.
For the case of genuine discontinuities, thousands of papers were devoted during decades to

design second-order accurate schemes for the Euler model that are able to compute accurately
shocks. However, even a high resolution scheme is unable to converge at second order to-
wards a discontinuous solution when it is combined with a uniform mesh re�nement process,
see for example [8]. This failure is related to the impossibility in interpolating accurately a
discontinuous solution on a sequence of uniformly divided meshes. In a recent paper [9], the
poor performance of P1 interpolation of discontinuous functions in uniform mesh re�nement
was again put in evidence. Convergence order in L2 norm is less than one. It was shown that,
conversely, adequate sequences of adapted meshes can o�er a higher order of convergence.
But, in two or three dimensions, only the anisotropic mesh adaptation has the potential to
produce a second-order convergence. Conversely, in Reference [10], we analyse for interpo-
lation problems why and in which conditions anisotropic adaptation can be able to produce
second-order accuracy on discontinuities.
In contrast, in the case of viscous shocks, it is true that second-order convergence should

be always obtained when uniform re�nement involves �ne enough meshes. But, in practical
cases, we generally do not observe the second-order convergence. This demonstrates that the
usual asymptotical theory does not explain today’s experience and should be extended.
Our study will rely on the following explanation: the ‘viscous discontinuities’ should be

understood as behaving in some case as pure discontinuities, and in some case as smooth
regions. Indeed, when the mesh which is used is not �ne enough to capture the smooth thick-
ness of the shock, then the viscous shocked �ow calculations generally show a convergence
order which is not better than the inviscid one, that is with a numerical order close to one.
The key goal of this work is then to identify an algorithm that will show early second-order

convergence of viscous �ows with discontinuities. And the key principle is to use a mesh
adaptive method that is able to produce second-order accuracy on genuine discontinuities.
For doing this, we do not need to reinvent all the ingredients of the method. Instead, we

shall use some well established ones (some of them are even available on the WEB), resulting
from the recent mesh adaption studies. Mesh adaptation studies represent today an enormous
amount of work. They involve many application studies in which meshes are improved in
order to better compute some particular physics. They also involve theoretical developments
dedicated to the better speci�cation of a mesh adapted to a precise computation. A particular
interesting emerging subject is the mathematical building of methods taking into account the
whole process from a numerical scheme, local errors, and particularly mesh speci�cations.
We refer for example to [2, 3]. Since an adapted mesh can be speci�ed, this may mean that
the mesh satisfying some speci�cations is somewhat unique in a class of equivalent meshes.
Several teams have adopted this line of reasoning, see for example [11, 12].
After being speci�ed, the adapted mesh must be built. This can be done by taking bene-

�t from the recent progress in the elaboration of anisotropic meshes, either by a powerful
improvement of the current mesh [11] or by its regeneration [12] according to the given
metrics. The present work will use the latter option, although we believe the former is also
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adequate. Of course, the �ow resolution kernel has also to satisfy some accuracy properties
on a wide class of meshes. We shall work with a well validated upwind �nite-volume scheme
of vertex-centred type.
The main contribution of this paper is to propose a combination of these methods that

�rst will produce adapted solutions for a �xed number of nodes, and second will lead to
early second-order mesh convergence. This will allow for a Romberg-type numerical quality
analysis: once the second-order numerical order is certi�ed we derive classically an estimate
of the approximation error.
In the next section, we present the complete algorithm built with the above ingredients and

designed for converging to the continuous solution. In Section 4, we compare the adapted
mesh convergence with the classical uniform mesh convergence for academic test cases.
Section 5 presents a case inspired by an industrial problem. Two other examples are pre-
sented in Section 6.
The plan is then as follows:

1. A mesh convergence algorithm
2. An academic test case
3. A more practical example
4. Turbulent �ows
5. Conclusion

2. A MESH CONVERGENCE ALGORITHM

The purpose of the mesh convergence algorithm is to build an idea of the continuous solution
to the �ow problem by proposing:

– several approximate solutions and
– a rather reliable estimate on the accuracy of the solutions.

This will be obtained by an algorithm producing a set of solutions showing convergence
to the continuous limit with an uniform order. This algorithm will involve a �ow kernel, an
adaptative mesh generator, and tools for comparing the solutions and certifying the conver-
gence.

2.1. Flow kernel

Since we want to get second-order convergence to the continuous solution with sequences of
adapted very irregular meshes, it is compulsory to have a numerical approximation that will
be actually second-order accurate in these conditions. The spatial discretization scheme that
we use is often referred to as a mixed �nite element=�nite volume scheme. It is based on a
vertex-centred �nite-volume method, with degrees of freedom located at triangle vertices and
dual cells limited by triangle medians. It is combined with a P1-Galerkin �nite-element integra-
tion of the di�usive terms. For the stabilization of the advective terms, the scheme involves
a MUSCL-type second-order Godunov-type upwinding built from the Roe Flux Di�erence
Splitting with or without low Mach number correction. We refer to [13] for a description of
the scheme and to [14] for analyses showing second-order accuracy on simpli�ed models but
rather arbitrary meshes, i.e. meshes that may involve very high local variation of mesh size,
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but that are not too stretched. This accuracy order is the best (for this scheme) that can be
observed on arbitrary �ows, and in particular, the scheme does not enjoy superconvergence on
Cartesian meshes [14]. This property is interesting for an accurate evaluation of convergence
order.

2.2. Mesh adaptation with a �xed number of nodes

For a given number of nodes, we want to specify an adapted mesh. We seek a mesh adaption
method which sati�es the following properties:

(i) For a given mesh size, the method speci�es essentially only one mesh and one discrete
solution. By essentially, we mean that two meshes that produce in all region of com-
putational domain about the same quality of approximation are just two representants
of the same class of equivalence of meshes.

(ii) For a regular enough continuous solution, mesh description should be independant of
mesh size. This will play the role of the embedded mesh assumption.

(iii) For singular solutions the mesh should enjoy second-order discontinuity capturing.

From the approximate �ow solution we extract a particular scalar quantity de�ned at every
vertex on the mesh, the sensor. To �x the idea, we take the Mach number. We do not think
that the Mach number makes the best sensor. Its replacement by a better option would deserve
a study that is beyond the scope of the present work. This point will be further discussed in
the conclusion of this paper.
From an approximate Hessian matrix of the sensor we derive, as in Reference [12],

the metrics (a 2× 2 matrix de�ned also over the mesh). Two options are studied: (i) in the
isotropic case, the matrix is the product of the identity matrix by a scalar taken equal to
the absolute value of the largest eigenvalue of the above Hessian. (ii) in the anisotropic case,
the matrix is essentially the absolute value of the Hessian, as proposed in Reference [12].
With the above rules of thumb (i) and (ii), it is possible to imagine a set of approximation

method that would permit the metrics to converge to a smooth continuous one, which would
have two consequences:

(1) In the case where the mesh size is speci�ed, the continuous metric would be unique,
and in the smooth case, and then the problem is well posed (�ow is well posed, metric
is a passive variable, function of �ow). This is a good option if we want to have also
a unique discrete solution.

(2) When the above solution is obtained for a sequence of mesh size tending to an in�nite
number of nodes, then, in both adaptive and uniform options, couples (�ow, normalized
metric) converge to a unique continuous analog (continuous �ow, continuous metric).

These properties have not been proven but have been observed on practical examples. It
remains to consider (iii), i.e. discontinuity second-order capturing capacities. As mentioned in
the introduction, we adopt the standpoint explained in Reference [10]. In this paper, the authors
observe that only a part of adaptive methods are able to capture genuine discontinuites with
second-order accuracy, and identify (a) second derivative based sensors and (b) anisotropic
adaptation as particular features favourizing second-order discontinuity capturing.
Once the metrics are obtained, they are used as input in a mesh regenerator, for rebuilding

a new mesh following the metrics and involving approximatively the prescribed number of
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Initial mesh Initial flow solution

Yes

No

  i=0

i = i +1

Is solution fully adapted?

Interpolate flow solution i–1 onto new mesh

Reconverge flow solution on new mesh

Build a new mesh

Compute metrics

Specify N

while keeping N nodes

Figure 1. Adaptative interpolation. This loop provides a couple (mesh, �ow solution)
for a prescribed number of nodes N .

vertices. For this task, we have applied an existing software, BAMG, proposed by Hecht
and co-workers, see Reference [12]. BAMG uses the metrics de�ned on the initial mesh
in order to test if some local improvement is necessary. Di�erent local tools, such as edge
suppression and swapping, vertex suppression, addition, and reallocation are applied until the
metrics are satis�ed, i.e. typically, every edge has a length close to unity for the considered
metrics.
A crucial issue is the iteration and non-linear convergence of adaptation �xed point. In

order to obtain the more or less unique mesh that is perfectly adapted according to our
algorithm, the new adapted mesh is re-injected in an adaptation loop in order to get a new
solution, then a new mesh, again with the same prescribed number of nodes. This algorithm
is sketched in Figure 1. Typically, after 6 to 10 cycles, the mesh and the solution do not
change signi�cantly and the adaptation loop is declared as iteratively converged.
An accurate interpolation is applied to transfer solutions between the successive meshes in

order to save computational e�ort. This tool is described in the sequel.
The result of this process is to construct an approximate adapted solution for a prescribed

number of nodes.

2.3. Mesh convergence, transfers of solutions and numerical convergence order

2.3.1. Mesh convergence sequence. We propose to compute the numerical order from three
approximate solutions for three prescribed di�erent numbers of vertices: N , 4N , 16N . We
note that in the case of adapted meshes, the meshes are not embedded. Further, the ratio
between the vertices of two meshes does not need to be chosen as a multiple of 4. The
choice of this ratio has just the advantage of an easy comparison with a classical embedded
mesh convergence (uniform mesh division).
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2.3.2. Transfers to a unique mesh. In order to compare solutions and to be able to compute
their di�erences, we project all solutions on the �nest mesh of the considered series.
Two types of projection were tried and compared. The P1 projector will keep exactly the P1

interpolation of the coarse mesh after transfer to any �ner mesh. Beside this canonical option,
and in order to have a transfer more robust in case of non-embedded meshes, we have
also applied a projector which interpolates the function with a P2 operator inside triangles
(P3 along edges) built from the knowledge of average gradients at vertices. We shall refer to
it as the P2 projector.

2.3.3. Evaluation of the numerical order of convergence. The convergence assumption is set
for the L2 space, by analogy with the elliptic �nite-element theory, but with an estimate of
the remainder:

uh= u+ N−1u1 + N−3=2OL2 (1) (1)

where OL2 (1) is a function which is bounded in L2 norm when N tends to in�nity.
Let M1; M2; M3 be a triplet of meshes with a ratio of vertex numbers equal to four and

U1; U2; U3 the corresponding solutions.
We can compute the ratio q between the two consecutive deviations in L2,

q=
‖U1 −U2‖L2
‖U2 −U3‖L2

The convergence order is evaluated by solving �= ln q=ln 2. In practice, we shall say that
the second-order convergence is observed when the numerical order lies between 1.6 and 2.2:

�∈ [1:6; 2:2] (2)

2.3.4. Global algorithm. It writes:
0. Start with two adapted solutions SN and S4N with N and 4N nodes.
1. Compute an adapted solution S16N with 16N nodes.
For this, iterate Algorithm 1 until convergence.
2. Transfer all solutions to the �nest mesh. Test whether the triplet of SN , S4N , S16N

satis�es the numerical order statement (2).
3. If not, set N = 4N and go to 1.
4. If yes, stop.

3. AN ACADEMIC TEST CASE

Obtaining a second-order convergence on three meshes with the above ratio (N; 4N; 16N ) is a
di�cult task, even for very simple and smooth �ows such as 2D airfoil �ows at a very low
Reynolds, Rey=73. The airfoil geometry is the standard NACA0012, and two far�eld Mach
numbers are considered, M =0:85 and 1.2.

3.1. Uniform re�nement study

A traditional mesh convergence study relies on a series of embedded meshes. It is the occasion
to check how mesh convergence works with unstructured meshes. In order to have four
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Figure 2. Uniform re�nement: pressure contours for the supersonic �ow case with embedded meshes
of respectively (from left to right and top to bottom) 800, 3114, 12 284 and 48 792 vertices.

meshes that are at the same time embedded and unstructured, we start from a fully unstructured
coarse mesh and then the �rst intermediate mesh is obtained by dividing each triangle into four
equal subtriangles. The third mesh is derived from the �rst intermediate one by dividing again
each triangle in four equal triangles. The last (�nest) mesh is in turn obtained by division
of the previous one. The number of vertices (=nodes) of these meshes are, respectiveley,
800; 3114; 12 284; 48 792. By the way, we note that the new meshes are still unstructured, but
they have lost the smoothness of the local mesh size, since this mesh size stays constant
over macro-triangles and varies abruptly at the limits of the macro-triangles (the second-order
derivative of the local mesh size is zero over macro-triangles, but is a Dirac at their limits).
In the case of an elliptic �nite-element study, this loss of regularity would not be an obstacle
to second-order convergence and we assume this property extends to our case. For each
computation, the equation residual is converged down to the zero machine. Figure 2 gives
an idea of the quality of the various computations. We observe on the coarsest results some
oscillations that indicate that the mesh is too coarse and irregular. We consider two sequences
of three meshes:

(a) meshes with (800; 3114; 12 284) nodes, denoted by mesh sequence (a),
(b) meshes with (3114; 12 284; 48 792) nodes, denoted by mesh sequence (b).
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Table I. Uniform re�nement: several measures of L2 convergence order when two types of interpolation
towards the �nest mesh are used. Sequence (a) involves meshes with (800; 3114; 12 284) nodes, sequence

(b) involves meshes with (3114; 12 284; 48 792) nodes.

1 Mach 0.8 (P1) Mach 0.8 (P1) Mach 0.8 (P2) Mach 0.8 (P2)
Variables sequence (a) sequence (b) sequence (a) sequence (b)

Rho 1.023 1.883 1.124 1.984
Rho*U 0.768 1.617 0.889 1.793
Rho*V 0.701 1.612 0.780 1.716

2 Mach 1.2 (P1) Mach 1.2 (P1) Mach 1.2 (P2) Mach 1.2 (P2)
Variables sequence (a) sequence (b) sequence (a) sequence (b)

Rho 0.873 0.977 0.948 1.139
Rho*U 0.905 1.645 1.016 1.851
Rho*V 0.993 0.970 1.024 1.121

We present in Table I the numerical convergence orders evaluated as explained in Section 2.
We restrict our study to the three �rst unknowns of the Navier–Stokes equations, density and
momentums. We observe �rst that computing the order of convergence from P2 interpolations
onto the �nest mesh show an improvement in the numerical convergence order of about
5–10%. We shall consider in the sequel only this P2 interpolation post treatment. All the
convergence studies on the sequence of coarsest meshes (a) produce a convergence order
around 1. This means that not all of the three calculations are in the asymptotic region where
dividing the mesh step by two ensures a four times smaller error. Convergence orders for
the subsonic case with the �nest meshes (b) appear to be near 2. For the supersonic case,
convergence order is near 1, even with the sequence of �nest meshes (except for the horizontal
velocity where we get the second order). We attribute this di�erence to the in�uence of the
bow shock, which is not well captured on the di�erent meshes. To sum up, the second-order
accuracy of the approximation scheme on unstructured meshes is con�rmed, but the above
sequence of meshes shows that only �ne meshes give some access to second-order accuracy
and this, only for solutions without viscous shock.

3.2. Isotropic adaptation study

Now the computations are done only by the mesh adaptation process described in Section 2.
A unique sensor, the Mach number is used, and the maximum eigenvalue of its local Hes-
sian is used as an isotropic metric. The iteration between computation and mesh regener-
ation applied until convergence is fully obtained between mesh and solution (typically 10
times).
We observe that with the sequence of �nest meshes, a second-order convergence is reached

for the two far�eld Mach numbers. We recall that from one case to the other one, two adapted
meshes with an equivalent �neness level are di�erent since they are adapted to di�erent �ows.
Second-order convergence is not observed with the coarse sequences, except for the horizontal
momentum (Table II).
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Table II. Isotropic adaptative re�nement: several measures of L2 convergence order.

Mach 0.8 Mach 0.8 Mach 1.2 Mach 1.2
Variables sequence (a) sequence (b) sequence (a) sequence (b)

Rho 1.05 1.78 1.00 2.13
Rho*U 1.87 1.89 1.61 1.55
Rho*V 1.26 1.71 0.99 1.80

Table III. Anisotropic adaptative re�nement: several measures of L2 convergence order.

Mach 0.8 Mach 0.8 Mach 1.2 Mach 1.2
Variables sequence (a) sequence (b) sequence (a) sequence (b)

Rho 1.74 2.01 1.62 2.15
Rho*U 1.58 2.08 1.78 1.75
Rho*V 1.83 1.66 1.85 1.87

3.3. Anisotropic adaptation study

The absolute value of the local Mach number Hessian is used as an anisotropic metric.
From Table III, we deduce that, with the anisotropic re�nement, second-order convergence is
obtained even with the coarse sequences of re�nement, for both cases, subsonic and supersonic,
and for the three considered variables. This convergence is obtained with meshes involving
a number of vertices that is four times smaller than with the previous strategies. This ratio
depends on the Reynolds number and would be much larger for thinner shocks.

Remark
As mentioned earlier, we have not considered the total energy convergence, and in fact, with
the Mach number as adaptative sensor, we do not get for the energy a convergence as good
as for the three other �ow variables. As a result, the proposed calculations are not adequate
for the evaluation of lift and drag coe�cients, as they depend on the total energy.

3.4. Error level

The validation of second-order accuracy, that is the maximal theoretical order of accuracy,
allows to derive an error estimate of the L2 error for the �nest mesh among the coarse
sequences.
Let us denote by u2 the solution computed with the adapted anisotropic mesh of 3114

vertices and u3 the solution computed with the adapted anisotropic mesh of 11 938 vertices
for the supersonic case.
Since we have second-order convergence, and starting from the deviation:

||u2 − u3||L2 = 1:802×10−4

we derive the following error estimate:

||u3 − u||L26(1:802=3) 10−4 = 0:600×10−4 (3)
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As can be expected, this estimate is coherent with the calculation of u4 done with the �nest
adapted anisotropic mesh. Indeed, we have:

||u3 − u4||L2 = 5:637×10−5

which con�rms the accuracy of (3).
We observe that the error estimate for u4 would be of 2×10−5, a rather small error for a

second-order accurate computation.
As a conclusion, this analysis gives some insurance that second-order convergence is

reached, ‘certi�ed’, and that the approximation error is reasonably well predicted by the
convergence model.

4. A MORE PRACTICAL EXAMPLE

Turbo-engines combustion chambers are limited by metallic walls with a large number of small
perforations. These perforations allow an external colder �uid to enter into the combustion
chamber and to facilitate a colder boundary layer to protect the wall against extreme heat.
The way only one hole interfers with internal and external �ows is di�cult to compute.
Indeed the �ow is a low Mach number �ow (Mach number is about a few thousandths), but
asymptotic models should not be used since the size of �uctuations of pressure, density and
temperature are forced to non-small values by far�eld external and internal �ow prescription.
See Reference [15] for a discussion about this modelization issue and for the low Mach
number correction applied to the approximation. Another important di�culty which we shall
not address in the present study is the size of the hole, that is smaller than the turbulent
boundary layer thickness and induces important local laminar behaviours. In the present study,
we restrict to a laminar 2D model.
The same numerical scheme as in the previous sections is applied, except that the Turkel

preconditioner is introduced inside the stabilization term of the Roe �ux di�erence splitting.
The accuracy of the resulting preconditioned scheme is discussed in Reference [15]. We �rst
give in Figure 3 a rough idea of the �ow: the upper boundary layer disappears at hole location
due to suction, the lower boundary layer is not much a�ected. The boundary conditions specify
some uniform pressure levels at far�eld, with two di�erent values, at upper part and at lower
part of the geometry. The velocities are on each part set equal at far�eld. The wall condition
is an isothermal one, with the same prescribed temperature for both sides of the wall. The
Reynolds number with respect to the perforation section is 5000. Experimental results are not
yet available.
In order to compute a ‘certi�ed solution’, we apply the proposed method, with mesh sizes

of about 3000, 12 000, 48 000 vertices. In order not to be handicaped by possible algorithm
convergence problems, the study uses the isotropic mesh adaptation procedure. This is possible
due to the fact that the main singularities are located at geometry angles. After adaptation,
the �nal meshes involve respectively 2963 vertices for Mesh 1, 11 864 for Mesh 2, and
47 451 for Mesh 3. We observe, see for example Figure 4 for the coarsest mesh, that the
boundary layer in the perforation needs a signi�cantly stronger local re�nement than the
plate boundary layers. The mesh convergence of the �ow is rather good between the coarse
mesh and the �ne one, as illustrated by the Mach number and pressure contours depicted
respectively in Figures 5 and 6. All the results are transferred to the �nest mesh by using
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Figure 3. Low Mach �ow near a perforated wall: contours of the velocity modulus, from 0 to 3 m=s.
External �ow is on upper side, with a smaller mean velocity, and a higher pressure; both �ows go

from left to right. Mean temperatures of the two �ows are identical.

Figure 4. Flow in a perforated wall: zoom of the coarsest adapted mesh (3000 nodes).
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mesh1
mesh3

Figure 5. Flow in a perforated wall: Mach contours comparison, solutions computed
with meshes 1 (coarsest) and 3 (�nest).

mesh1
mesh3

Figure 6. Flow in a perforated wall: pressure contours comparison, solutions computed
with meshes 1 (coarsest) and 3 (�nest).
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Table IV. Isotropic adaptative re�nement for the perforated wall computation: numerical order of
convergence for the four dependant variables.

Variables ||U1− U2|| ||U2− U3|| Numerical order

Rho 0.00408 0.00101 2.01
Rho*U 2.90405 0.41886 2.79
Rho*V 1.33931 0.25401 2.39
Rho*E 235.002 614.916 1.38

quadratic interpolation. Then, the numerical convergence rate (Table IV) is close to second
order, except for the total energy. The L2 error for the density on Mesh 3, for example, is
estimated as less than 3×10−4.

5. TURBULENT FLOWS

The proposed method has been applied to turbulent �ows computed with a statistical model.
The standard k − � model with a logarithmic wall law was applied. In order to allow for a
mesh convergence, it is essential that the thickness of the analytic wall region is prescribed
at the same value for the di�erent meshes (and does not vary with the mesh size). Except the
turbulence equations, the same numerical scheme as in Section 3 is used. In practice, turbulent
statistical models are used for obtaining rather global informations. This does not mean that the
task is easier. Friction coe�cients for example are di�cult to evaluate because in general the
numerical scheme does not exhibit a su�ciently strong convergence property for providing
an accurate derivative at the boundaries. This is often compensated by superconvergence
properties as those arising when the mesh is kept cartesian. A priori, we cannot get this
advantage in our mesh adaptation strategy. In a �rst calculation we consider the supersonic
�ow at the leading edge of a �at plate (without angle of attack). The in�ow Mach number
is 1.76 and the Reynolds number is 5:4×105. For �at elements, the approximation is adapted
according to Reference [16].
We try to evaluate accurately the value of the friction coe�cient Cf (P) computed from the

vertical derivative of the horizontal velocity component

Cf =�
@u
@y

∣
∣
∣
∣
Wall

at a �xed point P located 1 m down stream of the leading edge. Convergence of this scalar
output is measured by di�erence with a reference anisotropic adaptative calculation involving
30 000 vertices. The Mach number is chosen as sensor for adaptation. In the two typical
meshes presented in Figure 7, the features of this rather elementary �ow are easily recognized.
In Figure 8, we illustrate that, although not very regular, the mesh convergence of Cf (P) is
clearly of second order when the proposed mesh adaptative method is applied in its anisotropic
version. It is obtained with meshes not larger than 3000 nodes. With 4000 nodes the relative
error is about 2%, and about 0.3% for 20 000 vertices. In the case of the isotropic adaptation,
the second-order convergence is obtained only with meshes larger than 15 000 nodes.
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Figure 7. Two typical adapted meshes, isotropic (left) and anisotropic (right), for the
supersonic �at plate calculation.

Figure 8. Two typical adapted meshes, isotropic (left) and anisotropic (right), for the back
step �ow calculation, with this size of mesh, and due to the wall law, the wall boundary

layers are not yet re�ned.

In a second calculation, the classical �ow over a backward facing step is computed [17, 18].
In Reference [19], non-monotonic convergence is observed for this rather di�cult test case.
The same compressible turbulent model is applied with a Mach number of 0.1. The scalar
output under investigation is the abscissa of the reattachment point. The reference calculation
is obtained with the anisotropic adaptation and 35 000 vertices. The velocity modulus is the
sensor. For this mesh, a reattachment abscissa of 6.66 is obtained, an unusual and surprisingly
good value for a wall law model. We have compared the isotropic and anisotropic adaptative
strategies, see Figure 9. Mesh convergence of reattachment abscissa is obtained with second-
order accuracy when the proposed anisotropic method is used with meshes involving 1000
vertices, see Figure 10. On the contrary, the isotropic investigation still produced a poor
convergence rate close to unity, with meshes of 10 000 vertices, see Figure 11.
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Figure 9. Flat plate �ow calculation with anisotropic adaptation: mesh convergence of
friction velocity (straight line indicates second-order accuracy). In abscissa we have

the number of nodes and in ordinate the friction velocity error.

6. CONCLUSION

A method for second-order numerical convergence relying on mesh adaption has been pro-
posed. It uses two important ideas:

– mesh adaption has to be governed by metrics that may converge to a continuous one.
This is allowed by a continuous based de�nition of the metrics and a non-linear adaption
convergence.

– early discontinuity capturing methods are the key for practical applications. They can be
de�ned as capturing genuine discontinuities at second order.

We have proposed a set of tools for obtaining what we call ‘a certi�ed numerical simula-
tion’. Starting from an approximation enjoying a good behaviour on irregular meshes, we have
combined it with an adaptation loop. An important point is that mesh adaptation is always
performed for a �xed number of nodes. The third subset of tools deals with the transfers of
solutions between meshes and the solutions comparison for the certi�cation of the convergence
rate to the continuous limit.
The �rst examples of application of our mesh convergence algorithm are two classical

airfoil �ows. We have shown that second-order convergence with uniform re�nement is not
easily obtained even with a rather large number of nodes, while, with the proposed anisotropic
mesh adaptation approach, second-order convergence is observed with a much smaller number
of nodes. We have shown that the proposed method applies successfully to several other CFD
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Figure 10. Back step calculation with anisotropic adaptation: mesh convergence
of the reattachment point abscissa.

calculations. In the case of high Reynolds turbulent �ows, the uniform re�nement does not
produce any reasonable result. The isotropic option is clearly inaccurate.
Although less rigorous than an exact a posteriori error estimate, the proposed mesh conver-

gence analysis is a rather reliable method and carries some security in the use of the computed
results.
The cost of our computational method is not very high, since the coarse adapted meshes

produce already rather accurate solutions, and we can start with medium coarse mesh the
solutions as initial conditions on �ner mesh.
Of course this work shows the need of several extensions.
On a theoretical standpoint, we think it is necessary to complete our work by proposing a

better metric de�nition for mesh adaptation to the solution of a Partial Di�erential Equation.
Indeed, choosing just, as we did, a clever sensor (like Mach number) is an option which
lacks a �rm theoretical basis. In computations, this option appeared to be not adequate for
total energy and pressure convergence. Error models relying on the new methods of adjoint
states for mesh adaptation are under study [20].
We did not solve here the case of high Reynolds �ows computed ‘up to the wall’. This

context carries particular di�culties that merit a focused investigation. The extension to un-
steady calculations is also a di�cult issue since many related problems are not well solved
(in particular the de�nition of accurate and conservative transfers between two meshes).
Concerning a routine and transparent practical use of the proposed method, we think it

today possible in 2D since we could easily automate the present algorithm thanks to the
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Figure 11. Back step calculation with isotropic adaptation: mesh convergence of the
reattachment point abscissa.

robustness of all its components. A remeshing loop is much more easy to handle in 2D than
in 3D. In particular, boundary de�nition in 2D is not as complex as in 3D. But we think that
progresses in 3D CAD and mesh generation methods are fast enough to allow transparent 3D
mesh adaptation in a very few years.
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